Farewell to "Flush and Forget"

The toilet. What a remarkably civilized invention. But it is flawed, as I discuss in Plan B 2.0 (free online).

The current engineering concept for dealing with human waste is to use vast quantities of water to wash it away, preferably into a sewer system where it will be treated before being discharged into the local river. This "flush and forget" system is expensive and water-intensive, disrupts the nutrient cycle, and is a major source of disease in developing countries.

Water-based sewage systems take nutrients originating in the soil and typically dump them into rivers, lakes, or the sea. Not only are the nutrients lost from agriculture, but the nutrient overload has led to the death of many rivers and to the formation of some 200 dead zones in ocean coastal regions. Sunita Narain of the Centre for Science and Environment in India argues convincingly that a water-based disposal system with sewage treatment facilities is neither environmentally nor economically viable for India. She notes that an Indian family of five, producing 250 liters of excrement in a year and using a water flush toilet, requires 150,000 liters of water to wash away its wastes.

As currently designed, India's sewer system is actually a pathogen-dispersal system. It takes a small quantity of contaminated material and uses it to make vast quantities of water unfit for human use, often simply discharging it into nearby rivers or streams.

India's government, like that of many other developing countries, is hopelessly chasing the goal of universal water-based sewage systems and sewage treatment facilities—unable to close the huge gap between services needed and provided, but unwilling to admit that it is not an economically viable option.

This dispersal of pathogens is a huge public health challenge. Worldwide, poor sanitation and personal hygiene claim 2.7 million lives per year, second only to the 5.9 million claimed by hunger and malnutrition.

Fortunately, there is a low-cost alternative: the composting toilet. This is a simple, waterless, odorless toilet linked to a small compost facility. Table waste can also be incorporated into the composter. The dry composting converts human fecal material into a soil-like humus, which is essentially odorless and is scarcely 10 percent of the original volume. These compost facilities need to be emptied every year or so, depending on design and size. Vendors periodically collect the humus and can market it as a soil supplement.

This technology reduces residential water use, thus cutting water bills and lowering the energy needed to pump and purify water. As a bonus, it also reduces garbage flow if table waste is incorporated, eliminates the sewage water disposal problem, and restores the nutrient cycle.

The U.S. Environmental Protection Agency now lists several brands of dry toilets approved for use. Pioneered in Sweden, these toilets work well under widely varying conditions, including Swedish apartment buildings, U.S. private residences, and Chinese villages.

Two household appliances, toilets and showers, together account for over half of indoor water use. Whereas traditional flush toilets used 6 gallons (or 22.7 liters) per flush, the legal U.S. maximum for new toilets is 1.6 gallons (6 liters). An Australian-produced toilet with a dual-flush two-button technology uses only 1 gallon for a liquid waste flush and 1.6 gallons for a solid waste flush. Shifting from a showerhead flowing at 5 gallons per minute to a 2.5 gallons-per-minute model cuts water use nearly in half. With washing machines, a horizontal axis design developed in Europe uses 40 percent less than the traditional top-loading models. In addition, this European model now being marketed internationally also uses less energy.

For cities, the most effective single step to raise water productivity is to adopt a comprehensive water treatment/recycling system, reusing the same water continuously. With this system, only a small percentage of water is lost to evaporation each time it cycles through. Given the technologies that are available today, it is quite possible to recycle urban water supplies comprehensively, largely removing cities as a claimant on scarce water resources.

The existing water-based waste disposal economy is not viable. There are too many households, factories, and feedlots to simply try and wash waste away on our crowded planet. To do so is ecologically mindless and outdated—an approach that belongs to an age when there were many fewer people and far less economic activity.

For more on this subject, see Chapter 11, "Designing Sustainable Cities," in Plan B 2.0, available for free downloading.

See also: ::Should Houses Have Composting Toilets?, ::Composting toilets: Ready for Prime Time?, ::The Governor General on Composting Toilets

Tags: Conservation | Lester Brown